Die Relativitätstheorie befasst sich mit der Struktur von Raum und Zeit, dem Verhalten von Masse in selbigen (SRT) und setzt das alles in Abhängigkeit zur Gravitation (ART).
Anfang des 20. Jahrhunderts fußte das naturwissenschaftliche Verständnis von Raum, Zeit und Gravitation noch auf der newtonschen Physik. Die newtonsche Physik malte uns ein Bild des Universums mit Raum und Zeit als absolute, d.h. unveränderliche und voneinander unabhängige Größen. Die Gravitation zeichnete er als Kraft zwischen zwei Massepunkten.
In den Jahren von 1905 bis 1916 erfuhren diese Auffassungen dann eine radikale Revolution, ausgelöst durch eben jene Relativitätstheorie. Der theoretische Physiker Albert Einstein war maßgeblich an ihr beteiligt.
Die nächsten Abschnitte werden versuchen, die Grundlagen der Relativitätstheorie zusammenzufassen. Dabei muss der Prägnanz wegen auf Erläuterungen und Details verzichtet werden. Sie finden jedoch unter jedem Abschnitt Hinweise zu weiterführende Aufsätze. Falls Sie sich also näher für eines der aufregenden Phänomene der RT interessieren, klicken Sie sich einfach weiter.
Häufig wird behauptet, Einstein habe Newton widerlegt. Das ist falsch, er verbesserte ihn lediglich durch eine allgemeinere Theorie. Mit seiner speziellen Relativitätstheorie entlarvte Albert Einstein nämlich Raum, Zeit und Bewegung als relative Größen. Die newtonsche Physik war damit entthront und ist in Einsteins Theorie nur noch als ein besonderer Grenzfall enthalten.
Doch nicht nur das, die spezielle Relativitätstheorie kann uns auch zeigen, dass Raum und Zeit gar nicht unabhängig voneinander existieren. Vielmehr verschmelzen die beiden in der SRT zu einer einheitlichen Raumzeit .
Auch die Masse M und die Energie E erwiesen sich in ihrer weltbekannten Gleichung (s.o.) als zwei Seiten derselben Medaille. Zusammengehalten werden diese schließlich noch durch die Lichtgeschwindigkeit C, die entgegen allen anderen relativen Bewegungen und Geschwindigkeiten immer konstant und unabhängig vom Bezugsystem ist .
Elf Jahre später entwarf Einstein seine Allgemeine Relativitätstheorie. Diese berücksichtigt auch die Fälle, in denen die Gravitation eine Rolle spielt. In zehn Feldgleichungen verwarf Einstein den newtonschen Gedanken, Gravitation sei eine Kraft, die sich ohne Zeitverlust ausbreite. Anstelle dessen fasst er die Gravitation als Eigenschaft der gekrümmten Raumzeit auf. Materie krümmt das Raumzeit-Kontinuum und so entsteht Schwerkraft.
Das Schwerefeld kann man sich wie eine unsichtbare, gespannte Gummihaut vorstellen. Liegt nun ein massereicher Körper, etwa eine Sonne, in ihm, wird sie gekrümmt. Dementsprechend drückt sich auch die Gummihaut ein, wenn man einen Ball auf sie legt. Infolge der derart modifizierten Geometrie der Raumzeit ändert sich sogar der augenscheinlich so geradlinige Verlauf der Lichtstrahlen, die von den Massekörpern ausgehen. Erfasst vom Schwerefeld sucht sich der Lichtstrahl nun einen neuen, kürzstmöglichen Weg. Aus diesem Grund können wir auch noch die Sterne sehen, die sich eigentlich knapp hinter dem Sonnenrand verbergen.
Man kann sich wieder und wieder mit der Relativitätstheorie befassen und wird trotzdem niemals zu dem Gefühl kommen, alle ihre Konsequenzen durchgedacht zu haben. So geht es zumindest mir, immer wieder aufs Neue stehe ich vor Situationen, bei denen ich nicht weiß, wie man sie sich gemäß der RT denken soll. Oder die einem immer noch extrem komisch und unreal vorkommen.
Dabei lassen sich die Vorgänge und Eigenschaften innerhalb der Relativitätstheorie mathematisch unglaublich präzise beschreiben und gehören zu den bestbestätigten in der Geschichte der Naturwissenschaften. Dies klassifiziert sie, zusammen mit der Quantentheorie , als eine der besten Theorien der Gegenwart.
Zusammen mit der Quantentheorie stellt die Relativitätstheorie eine der zwei tragenden Säulen der modernen Physik dar. Beide gingen ursprünglich aus der newtonschen Physik hervor, enthalten diese immer noch als Spezialfall und erfüllen somit das Korrespondenzprinzip. Die Bemühungen vieler Physiker gelten dieser Tage der Vereinigung dieser beiden Säulen, wobei meist versucht wird die Relativitätstheorie in die Quantentheorie zu integrieren, und nicht andersrum.
In den Quantenfeldtheorien konnte man bereits die spezielle Relativitätstheorie mit der Quantentheorie und im Rahmen des heutigen Standardmodells der Physik einen. Der noch außenstehenden Quantentheorie, die auch noch die allgemeine Relativitätstheorie bzw. die Gravitation mit ins Boot nimmt, will man dann den Namen Quantengravitationstheorie geben.
Stand: 2015
Hiroji kurihara (Samstag, 07 September 2024 04:34)
Inertial Force is not Fictitious (Summary)
Spaceship is moving horizontally with uniform acceleration. Body m is pushing against rear wall of the spaceship's cabin (A). Rear wall pushes back the body with normal force (B). A is action, B is reaction.
Spaceship is moving horizontally with uniform acceleration. String attached to front wall of the spaceship's cabin stretches backward inside the cabin, pulling body m attached to rear end of string (A). The body resists pulling force of string (inertial resistance) (B). A is action, B is reaction.
To begin with, distinction between action and reaction seems to be unclear.,11
Hiroji kurihara (Freitag, 06 September 2024 07:37)
Acceleration and Non-Acceleration (again)
Imagine a human being in accelerating passenger car and a station staff standing on platform. Now, it is a thought experiment. What if increasing acceleration g is at the level of an unmanned missile ?
Difference between acceleration and non-acceleration is not fictitious. The two are physically different. Again, because it is big problem.
Hiroji kurihara (Dienstag, 03 September 2024 10:39)
Acceleration and Non-Acceleration
A spherical fluid is floating in space. The fluid is uniform and isotropic. That is, gravity has no acting on the sphere.
The sphere will be in non-accelerated frame. It is moving in a uniform linear motion through space (or is at rest). However, if the sphere moves in a way other than the above, there will be a corresponding deviation from uniform isotropy. Difference between accelerated and non-accelerated frame will not be fictitious.
Hiroji kurihara (Montag, 02 September 2024 09:44)
Acceleration and Non-Acceleration
A body is being pulled by strings from the left and right. Tension in the strings is the same, ma. The same body is being pulled by one string from the left and by two strings from the right. Tension in all three strings is the same, ma. Let the body in two figures be A and B.
Are A seen from B and B seen from A symmetrical ? No, that's not, because the internal stresses in body A and B are different.
Hiroji kurihara (Donnerstag, 29 August 2024 02:15)
Inertial force is not Fictitious (rewritten)
A spaceship is moving horizontally with uniform acceleration. Inside the spaceship, a body m is pushing against the rear wall. This force is action, and is inertial force. As reaction, and as normal force, the rear wall pushes back against the body. Magnitude of the two is ma.
Above explanation should be valid for one inside and outside the spaceship. Inertial force will be a real force for everyone, and will not be fictitious.
Hiroji kurihara (Samstag, 24 August 2024 05:13)
Sorry, not a latest test was posted. Allow me to post again.
Accelerating Frame and Non-Accelerating Frame (fragmentary)
◎ An observer in a passenger car in uniformly accelerating linear motion will see everything in the car as at rest ? What if g is large ?
◎ A website says that equiliblium of forces are only for frames that are at rest or in uniform linear motion.
◎ The difference between accelerating frame and non-accelerating frame is crucial. But we continue to turn away from to it. This is physics ?
◎ A string stretches horizontally inside the cabin of a spaceship moving to the right with a uniform acceleration. The right end of the string is fixed to the right inner wall of the cabin, and the left end is fixed to body m, which is floating inside the cabin. The string has a tension ma (ignore the mass of string). Both m and a are specific values.
Note) m and a will be the same for one inside and outside the ship.
Hiroji kurihara (Samstag, 24 August 2024 04:31)
Accelerating Frame and Non-Accelerating frame (fragmentary)
◎ An observer in a passenger car accelerating at a uniform speed will see everything in the car as at rest. What if g is large ?
◎ A website says that equiliblium of forces are only for framess that are at rest or in uniform linear motion.
◎ The difference between accelerating frame and non-accelerating frame is crucial. But we continue to turn away from to it. This is physics.
◎ A string stretches horizontally inside the cabin of a spaceship moving to the right with a uniform acceleration. The right end of the string is fixed to the right inner wall of the cabin, and the left end is fixed to body m, which is floating inside the cabin. The string has a tension ma (ignore the mass of string). Both m and a are specific values.
Note) m and a will be the same for one inside and outside the ship.
Hiroji kurihara (Dienstag, 20 August 2024 06:03)
Inertial Force is not Fictitious (rewritten)
Inertial force of a body moving in uniformly accelerated linear motion is based on m and a. There can be no denying. In addition, ma = F. In short, inertial force is not fictitious.
Hiroji kurihara (Sonntag, 18 August 2024 07:22)
Inertial Force is not Fictitious
In actual examples of action and reaction in Newton's third law of motion, sometimes, it is unclear which is action and which is reaction. But it must be clear that inertial force can be either of the two. Then inertial force must be real force. For everyone.
In the well-known formula F = ma, which is inertial force ? It can be ma. Then inertial force must be real force. For everyone.
Hiroji kurihara (Donnerstag, 15 August 2024 04:40)
Inertial Force is not Fictitious (rewritten)
Inside the cabin of a spaceship moving with uniform acceleration to the right, a string stretches. Right end of the string is tied to the right inner wall of the cabin, and left end is tied to a body m, floating inside the cabin. There is tension ma in the string (ignore mass of the string).
This physical fact and its explanation must be the same for one inside and outside the spaceship.
Hiroji kurihara (Montag, 12 August 2024 00:23)
Compound Nouns
Gravitational acceleration, local inertial frame, inertial mass, gravitational mass. Only four compound nouns. Sorry for my shallowness. But, probably or clearly, these four will be forcible.
Hiroji kurihara (Mittwoch, 07 August 2024 03:19)
Statics or Dynamics ?
A point (point of action) is pulled left and right by strings with a vector F, creating balance. Next, can the force on the right be considered an inertial force ? At right end of the right string, a body with mass m is placed. In other words, tension ma is acting on the right string. In this pictere, the whole is moving to the left with a uniform acceleration.
Note: This is a horizontal free falling.
Hiroji kurihara (Samstag, 03 August 2024)
Inertial Force is not Fictitious (rewritten)
An body m is suspended by a string from the center of the ceiling of a passenger car. If passenger car is accelerated to the right, string and body will tilt downward to the left. But, what if passenger car is jerk-moving? The inclination of string and body will continue to increase, the tension in string will increase, and eventually the string will break.
These situations and explanations of the situation must be the same for one inside and outside passenger car. Inertial force is not a fictitious force for one inside and outside the car. Inertial force in this case is action, and the reaction is the tension in string.
Hiroji kurihara (Samstag, 20 Juli 2024 00:43)
Inertial Force is not Fictitious (rewritten)
By a string, a body of mass m is hanging from the ceiling in the center of the passenger car. Body and the string are perpendicular. Next, the passenger car begins to accelerate to the right. Body and the string tilt to the left. This acceleration is usually constant. However, if an external force F continues to grow as time passes, the inclination of body and the string also continues to grow.
These pictures will be the same for one inside and outside the passenger car. And, the tension of the string which is reaction to the inertial force will be the same for the two also (and if the string breaks, it will be the same for the two also).
Hiroji kurihara (Dienstag, 09 Juli 2024 03:17)
Speed of Starlight (Supplement)
Allow me to add to latest posts. When the glass cube moves left and right….
Inside the glass, c/n is constant, and the other two are variable
Just before entering the glass, λ is constant, and the other two are variable
Just after leaving the glass, c is constant, and the other two are variable
Hiroji kurihara (Samstag, 15 Juni 2024 06:20)
Speed of Starlight
Sorry, in the first line of formula, letter "j" was added. Please read it as follows.
Difference inside the glass c/n = c/n f ≠ f λ ≠ λ
Hiroji kurihara (Samstag, 15 Juni 2024 03:31)
Speed of Starlight
A glass cube is floating horizontally in outer space. Two rays of starlight coming from the left and right are passing through the glass horizontally. Below is the difference between the two rays of light as seen from viewpoint of the glass (difference in formula v = f λ).
Difference inside the glass cj/n = c/n f ≠ f λ ≠ λ
Difference just before entering the glass c ≠ c f ≠ f λ = λ
Difference just after leaving the glass c = c f ≠ f λ ≠ λ
Hiroji kurihara (Donnerstag, 13 Juni 2024 04:45)
Measuring λ of Starlight
How is λ of starlight measured ? One thing is certain. The λ before it enters measuring device is not be varied with the motion of measuring device. So, if measuring device is moved, it will become clear which λ was measured (which λ of starlight before extinction or after extinction).
Hiroji kurihara (Sonntag, 09 Juni 2024 08:37)
Allow me to revise the first “Note” of my post (most recent). Sorry.
Note) For light before it reaches the glass, formula v = f λ also holds (from perspective of the glass). And value f is the same as f for the glass.
Hiroji kurihara (Freitag, 07 Juni 2024 23:53)
Value of Speed of Light (of starlight in outer space)
Light of two stars coming from the left and right is passing through a glass cube. This cube is floating horizontally in outer space. Inside the glass, formula c/n = f λ holds on starlight. Four values are known.
Two lights inside the glass are spectralized and the spectrum (distance between chosen atom or molecule A and B) is compared. The distance will be slightly different.
Note) For light in outer space, formula v = f λ holds. And value f is the same as f for the glass (from perspective of the glass).
Note) It seems that extinction does not conceal the difference of spectrum.
Hiroji kurihara (Mittwoch, 05 Juni 2024 04:15)
Speed of Light is not Constant Always (again)
From the left, a starlight is coming to a glass cube floating in outer space, and is leaving to the right. At the left and right end of the glass each, frequency of starlight is the same. Imagine that the glass is moving at various uniform speeds to the left and right. Then, v of light on the left and right will not be the same, and so will λ (the formula v = fλ is viewed from perspective of the glass).
Hiroji kurihara (Sonntag, 02 Juni 2024 01:14)
Extinction
Light entering glass from outer space has a speed of c/n relative to the glass. This equalisation in speed within the medium is called extinction, and is completed in a very small optical path length that differs depending on mediums. For glass, it is 0.0001 mm.
Imagine that the glass moves in various uniform linear motions in outer space. The speed of light entering the glass and leaving the glass are not the same (from the perspective of the glass).
Hiroji kurihara (Dienstag, 28 Mai 2024 02:07)
Wavelength Measurement (supplement)
A starlight is passing through horizontal tube in outer space from left to right. A flat glass plate is fitted in center of the tube. Imagine that this tube is moving at different uniform speed in left and right directions. For left and right light each, the formula v = f λ holds. Frome the perspective of the tube, f on the left and right sides are the same. But v will be different and λ will also be different.
There is an argument that v are the same. If so, λ must also be the same. However, λ on the left does not follow (does not be affected by) the motion of the tube. But λ on the right follows (is affected by). This difference must not be forgotten.
The wavelength of light and the speed of light each is not the same before and after extinction.
Note) For glass, extinction is done in the distance of 0.0002 mm.
Hiroji kurihara (Freitag, 24 Mai 2024 09:03)
Wavelength Measurement (Aw)
Is wavelength of light traveling in outer space being measured as it is (on light before arriving) ? Isn't what is being measured light (extincted light) that has passed through a medium such as glass ? In internet (a bit), any site mentioned can not be found.
Suppose an observer moving in various motions in outer space is measuring wavelength of starlights. In the formula, c = f λ, f varies. Accordingly, c varies. However, we seem to believe, it is λ that varies.
We must distinguish the light before and after measurement device (before and after extinction).
Hiroji kurihara (Mittwoch, 22 Mai 2024 05:18)
Hollow Tube and Speed of Light (again)
In outer space, starlight coming from the left is passing through a stationary horizontal tube of length L. Frequency at the left and right ends of the tube is the same. This sameness is true even if the tube is moving in the left and right directions at different uniform speed. In other words, number of waves that exist inside the tube (wave number × L) is invariable. There is no varying in wavelength of light. In the formula, c = f λ, it is f and c that vary. It is the first picture.
In the second picture, there are two tubes the same as above. The two are moving at a uniform speed. One is to the left and the other is to the right. As mentioned above, wavelength of light is the same. In the formula, c = f λ, f and c (of the two) are not the same.
Hiroji kurihara (Sonntag, 19 Mai 2024 12:28)
From today's post, erase the word "Aether" (fourth word in text), please. Sorry.
Hiroji kurihara (Sonntag, 19 Mai 2024 11:45)
Aether Drift (again)
Speed of lightAether is the distance that light travels in one second, 299,792,458 m/s (defined value). Above value was obtained by measuring frequency and wavelength of laser light performed by Evenson et al in 1973 (error was ± 1.2 m/s).
Imagine frequency and wavelength of light coming from two fixed stars located at symmetrical points (at opposite ponts) on the celestial sphere. Measuring must be done simultaneously. Perhaps many of the measured speeds of light are different. If so, it will be possible to identify two points (on the celestial sphere) where the difference is greatest.
Note) Differences due to known mtion of Earth such as revolution and rotation must be excluded.
Note) Wavelength must be measured before the light enters mediums such as glass. Is it possible ?
Hiroji kurihara (Samstag, 18 Mai 2024 10:08)
One-way Speed of Light/Isotropy of Aether (again)
English version of Wikipedia has an item titled "One-way speed of light". Word isotropic is found in 27 places.
However, if the light from multiple celestial bodies on the celestial sphere is recorded and analyzed in outer space, one-way speed of light will become disclosed. Probably easily. By established means of measuring aberration.
The position of bright lines and dark lines in spectrum of the celestial body's light will show the speed of celestial body's light and speed of light relative to Earth (and Aether drift). The isotropy and uniformity of aether will also be disclosed
Hiroji kurihara (Sonntag, 12 Mai 2024 07:36)
Lunar Laser Ranging (again)
Distance between Moon and Earth is measured with millimeter precision. Measurement is based on the formula “distance = speed of light x round trip time / 2”. What is noteworthy here is that the direction of laser beam with respect to celestial sphere does not affect the measurement results.
Assume that the space where Moon and Earth exist is also filled with aether. Measurement results will differ depending on the direction of laser beam with respect to celestial sphere (according to the explanation of MM experiment).
However, aether does not affect the propagation of electromagnetic waves at the distance between Moon and Earth. That is, aether does not affect the propagation of electromagnetic waves for a few seconds after emission. Ritz’s emission theory is revived, although in a limited extent. For now, let’s take this as an assumption. There is no need to be worried about the framework of time or space.
Hiroji kurihara of (Samstag, 04 Mai 2024 02:53)
Law of Universal Gravitation (rewritten)
Formula for the law of universal gravitation is F=GMm/r^2. Value r is the distance between centers of gravity of the two bodies (let’s call them spheres L and R). If r is 50, the squared is 2500. It is the first diagram.
Now, this is the second diagram. On a horizontal straight line, spheres L, R1, and R2 are lined up. If distance between L and R1 is 49, and distance between L and R2 is 51, the squared are 2401 and 2601. If these two are added and divided by 2, the value 2501 is gotten, which is slightly larger than 2500. In other words, the formula of universal gravitation doesn’t care about the size of the two sources of gravity, but in reality, there will be some effect, even if it’s a little ? Is Newton’s spherical shell theorem not perfect ? Is this the main cause of apsidal precession ?
Note) 2500 and 2501 are coefficients in numerator of the formula.
Note) Masses of R1 and R2 each are 1/2 of the mass of R.
Note) Assume that R1 and R2 are hemispheres of R (distance of centers of gravity is 2).
Hiroji kurihara (Samstag, 27 April 2024 07:13)
Accelerated Motion and Non-Accelerated Motion (again)
All accelerated motion is accompanied by inertial force (it is reaction. See Newton’s third law of motion).
All non-accelerated motion is not accompanied by inertial force. It is the same for absolute rest (relative to aether frame).
Gravity is unrelated to this problem.
Hiroji kurihara (Samstag, 20 April 2024 03:48)
Equivalence Principle (again)
Allow me to repeat the previous question,regarding two situations ◎ below. Two situations ◎ can be explainend qualitatively and quantitatively using formulas based on Newton’s laws of motion. The question is, how to explain equivalent principle ? Is there anyone who can ? .
◎ Forces of the same magnitude are acting on a mass point from the left and right directions. Types of forces are tension, gravity, and inertial force. Since there are no combinations of inertial forces and inertial forces, there are five combinations of forces (ignoring the difference between left and right).
◎ A body is sliding down inclined surface (no friction).
Hiroji kurihara (Freitag, 19 April 2024 06:04)
Equivalence Principle (again)
On the ground, a passenger car is moving with uniform acceleration to the right. In the car, a body hanging from the ceiling with a string is swinging to the left. The angle can be explained qualitatively and quantitatively using equations based on Newton’s laws of motion. What about equivalence principle ? Is there anyone who can ?
Hiroji kurihara (Dienstag, 16 April 2024 10:16)
Accelerated Motion and Non-Accelerated Motion (again)
Difference between the two motions above will be the difference of motion with respect to aether frame. A mass point moving in accelerated motion is accompanied by inertial force, that corresponds qualitatively and quantitatively. A mass point moving in non-accelerated motion (uniform linear motion) is not accompanied by inertial force.
A saying are trying about inertial force and gravity. What can we say by comparing the two words ? Inertial force is inertial force, gravity is gravity and both are true forces ! That seems to be all that can be said. This is a short report.
Hiroji kurihara (Freitag, 12 April 2024 10:11)
Local Inertial Frame (again)
An elevator cabin is in free fall. Imagine mass points placed regularly in the elevator. Vector of inertial force acting on each mass point is the same. Local inertial frame is impossible.
Two elevators are moving apart horizontally. One is in accelerated motion and the other is in non-accelerated motion. By an accelerometer, to tell which one is accelerating is possible. In the elevator with accelerated motion, there is no inertial frame, even locally. this
Hiroji kurihara of (Freitag, 12 April 2024 09:01)
Accelerated Motion (again)
A passenger car is accelerating to the right (uniform acceleration). A light source (wavelength is onstant) at the rear wall of the car emits light, and on the front wall, frequency measuring device is settled. During acceleration, in the car, there will be more waves than before. In other words, accelerated motion is not fictitious (inertial force will not be fictitious also).
A ray of light is emitted from the ceiling of a passenger car directly below. When this car is accelerated, the light ray reaches the floor in a parabola. Difference between acceleration and non-acceleration is not fictitious.
Hiroji kurihara (Freitag, 12 April 2024 08:59)
Accelerated Motion & Inertial Force (again)
Accelerated motion is absolute motion relative to aether frame. The two are two sides of the same coin. Gravity is irrelevant at all, and does not play a role in this problem.
Hiroji kurihara (Montag, 01 April 2024 08:33)
Measuring Aether (again)
In outer space, frequency and wavelength of incoming lights from two stars (from opposite directions on the celestial sphere) are measured. To the measurer, speed of two incoming lights will be different. And sum of speed of two lights will be 2c (or close to 2c : constant). In post 262, it is forgotten to note. Sorry.
Hiroji kurihara (Freitag, 29 März 2024 02:46)
Accelerated Motion & Inertial Force (again)
Accelerated motion and inertial force correspond qualitatively (also, in the direction of celestial sphere and of aether) quantitatively. This will lead to zero inertial force in non-accelerated motion. Without exception. In addition, let us assume that non-accelerating motion includes absolute rest.
Hiroji kurihara (Montag, 25 März 2024 07:10)
Centrifugal force (again)
Rods of length 4r and 2r are rotating horizontally (in the shape of a cross). Assume that four edges
of the rod each has mass point of mass m, and the mass of the rod is zero. Tension (centrifugal force) acting on the rod is a true force.
The formula for centrifugal force is F = m v^2/r. And as Newton’s third law of motion shows, centrifugal force is an action and centripetal force is a reaction. The magnitude of the force is the same. The two are true forces.
Tension is centrifugal force, an effect of Newton’s third law of motion, and centripetal force is a reaction. The two are true forces. Rotational motion can be boiled down to accelerated motion and non-accelerated motion (including absolute rest). Frame will be the celestial sphere and the aether.
Hiroji kurihara (Mittwoch, 06 März 2024 03:58)
Measuring Aether (again)
In outer space, frequency and wavelength of incoming lights from two stars (from opposite directions on the celestial sphere) are measured. To the measurer, speed of two incoming lights will be different. And it will mean the motion (in the direction of light path) of the measurer with respect to aether.
Note) If the measurer moves in the direction of light path, frequency and speed of two incoming lights will vary. Because, wavelength of two incoming light does not vary.
Hiroji kurihara (Samstag, 02 März 2024 08:44)
Propagation of Light in Two Ways (again)
Annual aberration and daily aberration mean motion of Earth (with respect to aether). Aether is real existence. On the other hand, if the distance to the light source is not too far (no, even the distance to the Moon also !), propagation of light will follow emission theory. Both aether and emission theory will revive. As phoenixes some day. Relativity will fade away.
Hiroji kurihara (Donnerstag, 29 Februar 2024 05:41)
Sorry, I made a silly mistake. I ask to erase my most recent post, please (and this).
Hiroji kurihara (Mittwoch, 28 Februar 2024 04:52)
Propagation of Light in Two Ways (guess)
In space, spaceship is floating (not accelerating). From this spacecraft, multiple probes begin a uniform linear motion towards assigned star on celestial sphere. A light source set on the probes that shines at a certain frequency is visible from the spacecraft.
Is the assumption that propagation of light in two ways (written before) correct ? If correct, frequency of probe's light (reaches the spacecraft) that emitted from before and after a few light-seconds distance will be different (although in rare cases it may not be different). The two, emission theory and aether will revovebe as phoenixes.
Hiroji kurihara (Montag, 26 Februar 2024 06:02)
Emission Theory (guess)
For a few seconds after emission, propagation of light will follow emission theory, and then follows the aether reference frame (as written before). In other words, from the aether reference frame, speed of light will vary, and energy of a photon will also vary. It is said that energy of light is proportional to its frequency.
Note) The above will be possible to explain accuracy of measuring the distance to Moon (by laser) and aberration without contradiction.
Hiroji kurihara (Montag, 26 Februar 2024 05:57)
Emission Theory (guess)
For a few seconds after emission, propagation of light will follow emission theory, and then follows the aether reference frame (as written before). In other words, from the aether reference frame, speed of light will vary, and energy of a photon will also vary. It is said that energy of light is proportional to its frequency.
Note) The above will be possible to explain accuracy of measuring the distance to Moon (by laser) and aberration without contradiction.
Hiroji kurihara (Mittwoch, 21 Februar 2024 03:51)
Aberration (again)
Space is filled with aether. For light, aether acts as a medium (as a reference frame). In other words, light propagates at the same speed through aether. Regardless of the direction of propagation. Earth is moving at different speeds with respect to aether. Therefore, speed of light with respect to Earth is different
Aberration is a phenomenon completed in upper atmosphere. It is the same as refraction. Result of Airy’s experiment (tube of telescope is filled with water) is only natural.
Due to aberration, it is said that visible position (direction) of celestial bodies shift beyond the direction of motion of Earth. No, shift will be behind the direction of motion of Earth. This will be clear by illustration of light rays in upper atmosphere.
Draw trajectory of position of a celestial body (on celestial sphere. returns to source every year). Ellipse of annual aberration will be warped by secular aberration. Daily aberration will be many small circles (365 pearls).
Hiroji kurihara (Montag, 19 Februar 2024 05:35)
Is speed of light constant? (again)
As posted preciously (one of which is on 20 Feb 2023), constancy of speed of light is impossible. Therefore, time dilation and Lorentz contraction are also impossible. Without a doubt.
Hiroji kurihara (Dienstag, 13 Februar 2024 00:45)
Propagation of Light (again)
Light propagates in two ways.
1) A reflector placed on moon’s surface is irradiated with laser light, and by reflected light, distance to Moon is measured. Error is a few centimeters. Laser light emitted from light source will follow emission theory for one second at least. This guess can be scored 90 points out of 100 points.
2) Various types of aberration. Light will follow reference frame of aether after passing through the region 1 above. This guess can be scored 120 points out of 100 points.
Note) In air,light propagates following to reference frame of air. So, MM experiments done in air is nonsense.
Hiroji kurihara (Sonntag, 11 Februar 2024 04:37)
Sound Waves, Light Waves and an Observer (summary)
Sound waves propagate through air, and light waves propagate through aether. Medium is uniformly isotropic, and speed of waves with respect to medium is constant. So, when a point-like wave source is stationary in medium, waves drawn on a plane are concentric circles. Therefore, if an observer is moving with respect to medium, speed of sound waves and light waves for the observer is not constant.
Note: Light waves using air as a medium propagate in the same way as sound waves.